首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1389篇
  免费   437篇
  国内免费   325篇
化学   1870篇
晶体学   8篇
力学   20篇
综合类   3篇
数学   3篇
物理学   247篇
  2024年   5篇
  2023年   36篇
  2022年   85篇
  2021年   169篇
  2020年   340篇
  2019年   141篇
  2018年   121篇
  2017年   76篇
  2016年   173篇
  2015年   133篇
  2014年   131篇
  2013年   112篇
  2012年   69篇
  2011年   58篇
  2010年   30篇
  2009年   59篇
  2008年   69篇
  2007年   59篇
  2006年   78篇
  2005年   48篇
  2004年   37篇
  2003年   42篇
  2002年   21篇
  2001年   16篇
  2000年   11篇
  1999年   5篇
  1998年   10篇
  1997年   4篇
  1996年   2篇
  1994年   3篇
  1992年   1篇
  1991年   1篇
  1990年   3篇
  1984年   1篇
  1983年   1篇
  1980年   1篇
排序方式: 共有2151条查询结果,搜索用时 31 毫秒
101.
硫正极较差的性能严重阻碍了锂硫电池的商业化进程,这些因素包括较低的导电能力以及在促进多硫化物转化方面较差的催化活性。我们开发了一种基于配体调控合成和低温热解的规模化策略来制备高效的正极复合材料(Co-N-C@KB),这种材料由富含Co-N-C活性位点的科琴黑(KB)组成。原子级分散的Co-N-C活性位点被证明有利于多硫化物在正极的转化,因而可以提高锂硫电池的容量和循环寿命。基于此,Co-N-C@KB作为正极可以使锂硫电池获得高达1 442 mAh·g-1的初始放电容量,并且该电池在长时间的稳定性测试中具有出色的容量保持能力。  相似文献   
102.
Using the global particle-swarm optimization method and density functional theory,we predict a new stable two-dimensional layered material:MgSiP_2 with a low-buckled honeycomb lattice.Our HSE06 calculation shows that MgSiP_2 is an indirect-gap semiconductor with a band-gap of 1.20 eV,closed to that of bulk silicon.More remarkably,MgSiP2 exhibits worthwhile anisotropy along with electron and hole carrier mobility.A ultrahigh electron mobility is even up to 1.29 × 104 cm~2 V ~1 s ~1.while the hole mobility is nearly zero along the a direction.The large difference of the mobility between electron and hole together with the suitable band-gap suggest that MgSiP_2 may be a good candidate for solar cell or photochemical catalysis material.Furthermore,we explore MgSiP2 as an anode for sodium-ion batte ries.Upon Na adsorption,the semiconducting MgSiP2 transforms to a metallic state,ensuring good electrical conductivity.A maximum theoretical capacity of 1406 mAh/g,a small volume change(within 9.5%),a small diffusion barrier(~0.16 eV) and low average open-circuit voltages(~0.15 V) were found fo r MgSiP2 as an anode for sodium-ion batteries.These results are helpful to deepen the understanding of MgSiP2 as a nanoelectronic device and a potential anode for Na-ion batteries.  相似文献   
103.
Further enhancement in the energy density of rechargeable lithium batteries calls for high-voltage cathode materials and stable anodes,as well as matched high-voltage electrolytes without compromising the overall property of batteries.Sulfone-based electrolytes have aroused great interest in recent years owing to their wide electrochemical window and high safety.However,significant challenges such as the complexity of synthesis,high melting point(typically above room temperature),high viscosity,and their poor compatibility with graphite-based anodes have drastically impeded their practical applications.In this review,recent progress of sulfone solvents in high energy density rechargeable lithium batteries is summarized theoretically and experimentally.More importantly,general improvement methods of sulfone-based electrolytes,such as adding additives and cosolvents,structural modifications of sulfo ne,superconcentrated salt strategy are briefly discussed.We expect that this review provides inspiration for the future developments of sulfone-based high-voltage electrolytes(SHVEs) and their widespread applications in high specific energy lithium batteries.  相似文献   
104.
Fe-based compounds with good environmental friendliness and high reversible capacity have attracted considerable attention as anode for lithium-ion batteries.But,similar to other transition metal oxides(TMOs),it is also affected by large volume changes and inferior kinetics during redox reactions,resulting in the destruction of the crystal structure and poor electrochemical performance.Here,Fe_3O_4/C nanospheres anchored on the two-dimensional graphene oxide as precursors are phosphated and sintered to build the multiphasic nanocomposite.XRD results confirmed the multiphasic nanocomposite composed of Fe_2O_3,Fe_3O_4 and Fe_3PO_7,which will facilitate the Li~+ diffusion.And the carbonaceous matrix will buffer the volume changes and enhance electron conduction.Consequently,the multiphasic Febased anode delivers a large specific capacity of 1086 mAh/g with a high initial Coulombic efficiency of 87% at 0.1 C.It also has excellent cycling stability and rate property,maintaining a capacity retention of~87% after 300 cycles and a high reversible capacity of 632 mAh/g at 10 C.The proposed multiphasic structure offers a new insight into improving the electrochemical properties of TMO-based anodes for advanced alkali-ion batteries.  相似文献   
105.
Numerous scientists are in the pursuit of energy storage materials with high energy and high power density by assembly of electrochemically active materials into conductive scaffolds, owing to the emerging need for next-generation energy storage devices. In this architectures, the active materials bonded to the conductive scaffold can provide a robust and free-standing structure, which is crucial to the fabrication of materials with high gravimetric capacity. Thus, hierarchical copper-cobalt-nickel ternary oxide (CuCoNi-oxide) nanowire arrays grown from copper foam were successfully fabricated as free-standing anode materials for lithium ion batteries (LIBs). CuCoNi-oxide nanowire arrays could provide more active sites owing to the hyperbranched structure, leading to a better specific capacity of 1191 mAh/g, cycle performance of 73% retention in comparison to CuO nanowire structure, which exhibited a specific capacity of 1029 mAh/g and capacity retention of 43%, respectively.  相似文献   
106.
电动汽车与锂离子电池   总被引:2,自引:0,他引:2  
文章简要介绍了混合动力汽车、插电式混合动力汽车、纯电动汽车和锂离子动力电池及其关键材料。发展电动汽车可以大幅度降低人们对石油的依赖和改善城市空气质量。锂离子电池性能优越,为电动汽车的发展提供了支撑。近期,新一代锂离子动力电池正极材料即将走向应用,可使电动汽车里程增加一倍,材料选择和电池设计及制造工艺与电池储存能量、寿命、安全等密切相关,尊道而重德,可做出“好”电池。  相似文献   
107.
LiFePO4/graphene (LiFePO4/G) cathode with exciting electrochemical performance was successfully synthesized by liquid phase method. LiFePO4 nanoparticles wrapped with multi-layered grapheme can be fabricated in a short time. This method did not need external heating source. Heat generated by chemical reaction conduct the process and removed the solvent simultaneously. The LiFePO4/G were analyzed by X-ray diffraction (XRD) analysis, scanning electron microscope (SEM), transmission electron microscopy (TEM), magnetic properties analysis and electrochemical performance tests. The LiFePO4/G delivered a capacity of 160 mAh g−1 at 0.1C and could tolerate various dis-charge currents with a capacity retention rate of 99.8%, 99.2%, 99.0%, 98.6%, 97.3% and 95.0% after stepwise under 5C, 10C, 15C, 20C, 25C and 30C, respectively.  相似文献   
108.
A simple method for the preparation of metal‐oxide‐coated three‐dimensional (3D) graphene composites was developed. The metal–organic frameworks (MOFs) that served as the precursors of the metal oxides were first synthesized on the 3D graphene networks (3DGNs). The desired metal oxide/3DGN composites were then obtained by a two‐step annealing process. As a proof‐of‐concept application, the obtained ZnO/3DGN and Fe2O3/3DGN materials were used in a photocatalytic reaction and a lithium‐ion battery, respectively. We believe this method could be extended to the synthesis of other metal oxide/3DGN composites with 3D structures simply through the appropriate choice of specific MOFs as precursors.  相似文献   
109.
Apart from energy generation, the storage and liberation of energy are among the major problems in establishing a sustainable energy supply chain. Herein we report the development of a rechargeable H2 battery which is based on the principle of the Ru‐catalyzed hydrogenation of CO2 to formic acid (charging process) and the Ru‐catalyzed decomposition of formic acid to CO2 and H2 (discharging process). Both processes are driven by the same catalyst at elevated temperature either under pressure (charging process) or pressure‐free conditions (discharging process). Up to five charging–discharging cycles were performed without decrease of storage capacity. The resulting CO2/H2 mixture is free of CO and can be employed directly in fuel‐cell technology.  相似文献   
110.
A facile method for the large‐scale synthesis of SnO2 nanocrystal/graphene composites by using coarse metallic Sn particles and cheap graphite oxide (GO) as raw materials is demonstrated. This method uses simple ball milling to realize a mechanochemical reaction between Sn particles and GO. After the reaction, the initial coarse Sn particles with sizes of 3–30 μm are converted to SnO2 nanocrystals (approximately 4 nm) while GO is reduced to graphene. Composite with different grinding times (1 h 20 min, 2 h 20 min or 8 h 20 min, abbreviated to 1, 2 or 8 h below) and raw material ratios (Sn:GO, 1:2, 1:1, 2:1, w/w) are investigated by X‐ray diffraction, X‐ray photoelectron spectroscopy, field‐emission scanning electron microscopy and transmission electron microscopy. The as‐prepared SnO2/graphene composite with a grinding time of 8 h and raw material ratio of 1:1 forms micrometer‐sized architected chips composed of composite sheets, and demonstrates a high tap density of 1.53 g cm?3. By using such composites as anode material for LIBs, a high specific capacity of 891 mA h g?1 is achieved even after 50 cycles at 100 mA g?1.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号